Adaptive Compressed Sensing MRI

نویسندگان

  • R. Otazo
  • D. K. Sodickson
چکیده

INTRODUCTION Most of the prior work in compressed sensing MRI has been based on pre-defined transformations to sparsify image representations, e.g. discrete cosine transforms (DCT), wavelets, and finite differences [1]. Even though an analytical transformation usually features a fast implementation, its performance as a sparsifying transform is limited by the underlying basis functions, which tend to be over-simplistic for real images. Recent work on sparse signal representation based on learning the basis functions from the signal itself has demonstrated improved performance over analytical functions. For example, the K-SVD method [2] uses image patches to get very sparse representations. This method was originally proposed for image denoising. In this work, we propose to adapt the sparsifying transform during the reconstruction process based on the K-SVD method in order to increase sparsity of image content and thus enable higher accelerations and/or improve image quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

A Practical Study of Longitudinal Reference Based Compressed Sensing for MRI

Compressed sensing (CS) is a new signal acquisition paradigm that enables the reconstruction of signals and images from a low number of samples. A particularly exciting application of CS is Magnetic Resonance Imaging (MRI), where CS significantly speeds up scan time by requiring far fewer measurements than standard MRI techniques. Such a reduction in sampling time leads to less power consumptio...

متن کامل

Motion-Adaptive Spatio-Temporal Regularization (MASTeR) for Accelerated Dynamic MRI

Accelerated MRI techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated MRI is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped for...

متن کامل

Adaptive compressed MRI sampling based on wavelet encoding

Introduction: The main idea of Compressed Sensing is to exploit the fact that there is some structure and redundancy in most signals of interest. Clearly, the more we known about the signal and the more the information we encode into the signal processing algorithm, the better performance we can achieve. In this paper, we propose an adaptive compressed MRI sensing scheme that combined wavelet e...

متن کامل

Compressed sensing for longitudinal MRI: An adaptive-weighted approach.

PURPOSE Repeated brain MRI scans are performed in many clinical scenarios, such as follow up of patients with tumors and therapy response assessment. In this paper, the authors show an approach to utilize former scans of the patient for the acceleration of repeated MRI scans. METHODS The proposed approach utilizes the possible similarity of the repeated scans in longitudinal MRI studies. Sinc...

متن کامل

Prospective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries

PURPOSE Diffusion MRI requires acquisition of multiple diffusion-weighted images, resulting in long scan times. Here, we investigate combining compressed sensing and a fast imaging sequence to dramatically reduce acquisition times in cardiac diffusion MRI. METHODS Fully sampled and prospectively undersampled diffusion tensor imaging data were acquired in five rat hearts at acceleration factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009